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Note 

Numerical Solution of Poisson’s Equation 
for Rapidly Varying Driving Functions 

I. INTRODUCTION 

Fast Fourier transform algorithms (FFT) have made the use of the discrete 
Fourier transform (DFT) an attractive technique for the numerical solution of 
partial differential equations with a finite-difference representation [ 11. In 
particular, this technique has been successfully applied to the solution of Poisson’s 
equation in Cartesian [2, 31 and cylindrical coordinates [4]. However, it is well 
known that the DFT gives rise to large errors in the solution of rapidly varying 
problems due to aliasing and Gibbs’ oscillations [S]. Motivated by the need to 
develop a fast and accurate technique for solving Poisson’s equation for rapidly 
varying conditions, we have developed a reconstruction algorithm for the FFT 
(RFFT) to minimize errors due to aliasing and Gibbs’ oscillations. This is achieved 
by prescribing the behavior within the sampling intervals of the sampled functions. 
We have used the RFFT with the algorithm of Kunhardt and Williams [4] and 
obtained an algorithm for the solution of Poisson’s equation in cylindrical coordi- 
nates and for rapidly varying conditions. This algorithm (reconstruction-Poisson) 
has been successfully applied to the solution of problems in which the space-charge 
density exhibits very steep gradients and large dynamic range [6]. 

The reconstruction Poisson algorithm for solving Poisson’s equation in cylin- 
drical coordinates is discussed in Section II. In Section III, the accuracy of the 
algorithm is illustrated by solving representative examples. 

II. DESCRIPTION OF RECONSTRUCTION-POISSON ALGORITHM 

A. Reconstruction Algorithm, RFFT 

Let f(z) denote any real function such that f(z) = 0, for z > a and z < 0, with 
Fourier transforms, F(K), given by 

F(~)=J;f(z)e~~‘dz. (1) 
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Suppose that f(z) is digitized by choosing N+ 1 equally spaced samples, with grid 
size AZ, given by 

AZ = afN. (2) 

The maximum frequency, K,, that can be represented by this sampling period is 

K, = ~/AZ. 

Let 

bd < Km 

otherwise 

be the Fourier transform of y,(z), where 

y,(z)=; Jy eCiKZdK. (4) 
Km 

(3) 

If there is no aliasing error for the sampled signals, then T,(K) F(K) is the 
digitized Fourier transform for /K( GK,. The function corresponding to r,(~) F(K) 

in the space domain is 

~(z)=j~f~z’)Y,(z--z’)dz’, (5) 

wheref,(z) is a K, -band-limited function of f(z). 
LetjJz) be the digitized form off(z) which has a constant value, fr, in an inter- 

val, where 0 ,< r < N. The cell boundaries of cell r is (Y - l/2) Ar and (Y + l/2) Ar. 
Assuming that the sampling error is less then E, then 

If(z) -f&)l < E, O<z<a. (6) 

To approximatef,(z), we use a function, j;fd(z’) y,(z -z’) dz’, which yields the best 
result for this given sampling period. From Schwarz’ inequality and Eqs. (4)(6), 
we find the error to be 

if,(z)- J~fd(z~)Y~(z-z~)d~‘l c~-F.a=cN, O<z<a. 

For sufficiently small E, this results in a good approximation. Then, 

f,(z) = j)dW Y,(Z - z’) dz’ 

(7) 

=b,J y,( z - z’) dz’ 
r=O cell r 

AZ yz,‘f,eirKA2) sine (F)] e-‘“‘dq (8) 
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where 

si*c(!$)=sin(y)/(y). 

Thus, from Eq. (8) we find that the RFFT of a function is obtained by taking the 
FFT of the digitized function and multiplying it with a sine function. This 
procedure minimizes aliasing errors. 

To reduce the errors due to Gibbs’ oscillation, we approximate f,(z) by a 
constant on each of the N - 1 cells. This constant is obtained by averaging the 
signal in a cell. This average, f,“, is defined as 

Using Eq. (8), we find 

dK, l<j<N-1. 

Note that fi” is represented by a constant value in an analog fashion. Thus, 
implementation of the inverse RFFT is achieved by multiplying the signal in the 
frequency domain with a sine function as shown in Eq. (9). 

The above derivation is summarized as follows: 

1. In the transformation from physical to Fourier space, we have used a 
stepwise function (constant on each cell) to approximate the charge function in 
space. For the functions which are not stepwise, we have derived a maximum error 
caused by this approximation from Eqs. (3) to (7). Equation (7) can be used as a 
guide for the user to choose the sampling period to satisfy the accuracy he needs. 
The bandlimited function and Schwarz’s inequality have been used to drive the 
upper error limit. 

2. In the transformation back from Fourier space to a sampled function in 
physical space, we have no knowledge about the form of the resulting function. In 
order to reduce the unrealistic Gibbs’ oscillations, we average the analytic resulting 
function on each interval, then get a stepwise analytic resulting function. As will be 
seen in the test cases, this approach results in a better approximation to the analytic 
solution, although the form of the analytic solution is not a stepwise function. 
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B. Poisson Algorithm 

The potential, 4, in cylindrical coordinates satisfies Poisson’s equation, 

f J,(rd,#(r, z)) + 85&r, 2) = -p(r, z)bo (10) 

subject to the boundary conditions &r, 0) = q5(r, a) = 0, where 0 < z < u and 
0 ,< r < co. In the algorithm of Kunhardt and Williams [4] (subsequently referred 
to as the KW algorithm), Eq. (10) is solved by expanding the functions 4 and p as 
follows: 

N-I 

&(r, z) = C q5n*(r) sin y z 
fl=O 

N-l 

p(r, z) = C p,*(r) sin : z. 
tl=O 

Substituting Eqs. (11) and (12) into a z-discretized form of (lo), and using the 
orthogonality properties of the sin functions, we obtain for $X, 

a:~:+$j:+-&(cos; -l)C= -f$ 

In the reconstruction Poisson algorithm (subsequently referred to as the RP 
algorithm), we proceed to solve Eq. (13) as follows. From Eqs. (8) and (12), we find 

p,*(r) = p,(r) sine , (14) 

where p,(r) is obtained from p(r, z) by using an FFT algorithm. Equation (13) is 
then solved by using a set of cubic polynomial spline functions that are chosen to 
satisfy the equation and continuity conditions (through the second derivative) at 
each grid point [4]. Once d,* is obtained, qS(r, z) is found by taking the inverse FFT 
of d,,(r) given by 

. (15) 

FIG. 1. Numerical axial field, E,, arising from a charge uniformly distributed in a disk with 
dimensions 0.085 cm < .r < 0.105 cm, 0 <r < 0.055 cm. (a) Input charge density for 0 < r < 0.055 cm. 

(b) Analytic solution for E, on axis. (c) Errors incurred in the solution of Eq. (10) using the RP 
algorithm (solid line) and the KW algorithm ( + ). Only 40 gridpoints are plotted to show the difference 
clearly. 
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III. TEST RESULTS 

The algorithm discussed in Section II has been tested on a spatial grid containing 
65 points uniformly spaced along the z-direction, and 84 points along the 
r-direction. In the z-direction, two electrodes locate at z =0 and 0.64 cm, with 
dz = 0.01 cm. The 4 and p are zero at electrodes. In the r-direction, grid points 1 
through 64 are uniformly spaced, with Ar = 0.01 cm; whereas grid points > 64 are 
spaced with exponentially increasing Ar. To illustrate the algorithm, two test cases 
have been chosen. These cases exemplify situations which result in large errors from 
aliasing and Gibbs’ oscillation. The first case is a disk with dimensions 
0 < r Q 0.055 cm, 0.085 cm < z < 0.105 cm. The charge is uniformly distributed inside 
the disk and has a density of lOi cme3. To show the accuracy of the RP algorithm, 
the axial field on axis, E, (E, = -@/laz), has been calculated and compared to that 
obtained by two other methods, namely, analytic and the KW algorithm [4]. The 
analytic solution is obtained by summing the E, of the disk and its images and 
shown in Fig. l(b) [7]. The errors incurred with the KW and RP algorithms are 
shown in Fig. l(c). As can be seen, the RP algorithm results in a significant reduc- 
tion in the error for the potential at the steep edges of the charge distribution. 

The second case considered represents a more stringent test. In this case, the 
charge is uniformly distributed in a disk of dimension AZ, Ar (0.085 cm ,<z < 
0.095 cm and 0 < r ~0.055 cm). The charge density for the results shown in 
Fig. 2(a) is 1015 cm-3. The analytic solution for this case is shown in Fig. 2(b). We 
expect the numerical solutions to show more overshoots and undershoots than for 
test case 1. From the error plots in Fig. 2(c), the RP algorithm is shown to yield 
superior results to those obtained from the direct method, especially near the 
charge distribution. At the grid point where maximum undershoot occurs, the error 
has been reduced from 22% (KW algorithm) to 12% (RP algorithm). 

Finally, the differences in the CPU time between the KW and RP algorithm is 
negligible. 
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FIG. 2. Numerical results for the axial electric field, E,, arising from a charge uniformly distributed 
in a disk with dimensions 0.085 cm Q .z < 0.095 cm, 0 < r d 0.055 cm. (a) Input charge density for 0 < r < 
0.055 cm. (b) Analytic solution for I?, on axis. (c) Errors incurred in the numerical solution of Eq. (10) 
using the RP algorithm (solid line) and the KW algorithm ( + ). Only 40 gridpoints are plotted to show 
the difference clearly. 
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